基于近红外摄像与深度学习的人手腕脉口位置精准定位方法
公开
摘要
本发明属于计算机图像处理技术领域,具体为基于近红外摄像与深度学习的人手腕脉口位置精准定位方法。本发明的基本步骤为:首先通过近红外相机对多人进行手部图像采样,由专业医生进行脉口位置的标记,作为深度学习脉口定位网络模型的训练数据;然后构建深度学习网络模型,网络模型包括特征提取网络和回归网络,特征提取网络对训练集进行腕部轮廓纹理颜色等特征提取,将提取到的腕部特征通过回归网络进行脉口位置预测,得到泛化能力较强的深度学习脉口定位网络模型;最后将拍摄到的手部图像作为预先训练好的深度学习脉口定位网络模型的输入,预测得到手腕脉口在图像上的位置。本发明方法能以较高的精度找到人手腕的脉口位置,为机器人进行中医脉诊提供实时的视觉定位。
基本信息
专利标题 :
基于近红外摄像与深度学习的人手腕脉口位置精准定位方法
专利标题(英):
暂无
公开(公告)号 :
CN114298978A
申请号 :
CN202111493641.1
公开(公告)日 :
2022-04-08
申请日 :
2021-12-08
授权号 :
暂无
授权日 :
暂无
发明人 :
路红罗静静杨博弘孟凯聂鑫垚黄冠豪祝兴
申请人 :
复旦大学
申请人地址 :
上海市杨浦区邯郸路220号
代理机构 :
上海正旦专利代理有限公司
代理人 :
陆飞
优先权 :
CN202111493641.1
主分类号 :
G06T7/00
IPC分类号 :
G06T7/00 G06N3/04 G06N3/08
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06T
一般的图像数据处理或产生
G06T7/00
图像分析
法律状态
2022-04-08 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载