基于卷积-堆叠降噪编码网络的半监督学习图像识别方法
授权
摘要

本发明请求保护一种基于卷积‑堆叠降噪编码网络的半监督学习图像识别方法,结合有监督训练的卷积神经网络和无监督学习的堆叠降噪自动编码机提出一种半监督学习网络,以在样本量不足的情况下提取更具表达性的高维特征,训练出更好的网络参数。利用卷积神经网络对样本数据进行有监督训练,提取图像特征同时避免空间特征的破坏。再把训练得到的特征向量输入到堆叠降噪自动编码机进行无监督学习,实现进一步特征学习,降低小样本带来的训练困难,后基于多层人工神经网络进行分类实现。将模型用于HLC2000手写汉字数据集中的复杂字、中等字、简单字、相似字进行脱机手写汉字识别,实验结果表明该模型的平均识别率能达到97%以上,并且结果较为稳定。

基本信息
专利标题 :
基于卷积-堆叠降噪编码网络的半监督学习图像识别方法
专利标题(英):
暂无
公开(公告)号 :
CN110232341A
申请号 :
CN201910464739.0
公开(公告)日 :
2019-09-13
申请日 :
2019-05-30
授权号 :
CN110232341B
授权日 :
2022-05-03
发明人 :
唐贤伦孔德松彭德光蔡军谢颖马伟昌李伟王婷闫振甫
申请人 :
重庆邮电大学
申请人地址 :
重庆市南岸区南山街道崇文路2号
代理机构 :
重庆市恒信知识产权代理有限公司
代理人 :
刘小红
优先权 :
CN201910464739.0
主分类号 :
G06K9/00
IPC分类号 :
G06K9/00  G06K9/62  G06N3/04  G06N3/08  G06T3/40  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
法律状态
2022-05-03 :
授权
2019-10-15 :
实质审查的生效
IPC(主分类) : G06K 9/00
申请日 : 20190530
2019-09-13 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332