基于卷积神经网络及边缘能量约束优化的绿地水系矢量提取方法
授权
摘要

本发明提供一种基于卷积神经网络和边缘约束能量优化的端到端的绿地水系矢量提取方法,设计适用于遥感影像的绿地水系提取网络架构。该架构包括遥感影像上下文特征抽取与融合,实现待处理区域影像基础特征抽取;在抽取丰富特征的基础上,结合卷积层和上采样层,并采用端到端的以能量优化迭代的方式,得到较精细且平滑的绿地水系边缘;最终使用全连接层或图卷积层微调至精细的绿地水系边缘。另外,本发明采用两种损失交叉熵和Dice损失用于绿地水系的语义识别,并在全卷积网络端和边缘能量约束优化端对识别结果进行约束,以及提出多层坐标点匹配损失函数实现对轮廓点的约束,使得模型能够让预测的结点更好地接近真值轮廓点。

基本信息
专利标题 :
基于卷积神经网络及边缘能量约束优化的绿地水系矢量提取方法
专利标题(英):
暂无
公开(公告)号 :
CN113378731A
申请号 :
CN202110670431.9
公开(公告)日 :
2021-09-10
申请日 :
2021-06-17
授权号 :
CN113378731B
授权日 :
2022-04-15
发明人 :
张觅张志力杨炳楠
申请人 :
武汉大学
申请人地址 :
湖北省武汉市武昌区珞珈山武汉大学
代理机构 :
武汉科皓知识产权代理事务所(特殊普通合伙)
代理人 :
王琪
优先权 :
CN202110670431.9
主分类号 :
G06K9/00
IPC分类号 :
G06K9/00  G06K9/62  G06N3/04  G06T7/13  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
法律状态
2022-04-15 :
授权
2021-09-28 :
实质审查的生效
IPC(主分类) : G06K 9/00
申请日 : 20210617
2021-09-10 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332