一种基于哈希学习的轻量化联邦推荐方法
公开
摘要

本发明提供了一种基于哈希学习的轻量化联邦推荐方法。该方法包括:初始化服务端全局模型并下发参数;初始化客户端本地模型并下载全局参数;设计联邦推荐场景下基于哈希学习的目标函数,根据协同离散优化算法得到二值化的用户特征向量与物品特征矩阵;根据二值的用户特征向量和物品特征矩阵完成本地客户端上的高效推荐任务。本发明通过在联邦推荐框架下设计高效的哈希学习策略,可以在本地客户端得到紧致的二值用户与物品离散特征,较之于连续实值的特征表示,该二值特征在资源受限的本地客户端上具有显著提高推荐效率、减少存储与通信开销并增强隐私保护能力的多重优势。

基本信息
专利标题 :
一种基于哈希学习的轻量化联邦推荐方法
专利标题(英):
暂无
公开(公告)号 :
CN114564742A
申请号 :
CN202210150584.5
公开(公告)日 :
2022-05-31
申请日 :
2022-02-18
授权号 :
暂无
授权日 :
暂无
发明人 :
李浥东张洪磊金一陈乃月徐群群
申请人 :
北京交通大学
申请人地址 :
北京市海淀区西直门外上园村3号
代理机构 :
北京市商泰律师事务所
代理人 :
黄晓军
优先权 :
CN202210150584.5
主分类号 :
G06F21/62
IPC分类号 :
G06F21/62  G06N20/00  G06F16/901  G06F16/9536  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06F
电数字数据处理
G06F21/00
防止未授权行为的保护计算机、其部件、程序或数据的安全装置
G06F21/60
保护数据
G06F21/62
通过一个平台保护数据存取访问,例如使用密钥或访问控制规则
法律状态
2022-05-31 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332