一种基于声嵌入记忆空间编码器模型的特征对抗增强水下目标识...
公开
摘要
本发明属于水下目标识别技术领域,具体涉及一种基于声嵌入记忆空间编码器模型的特征对抗增强水下目标识别方法。本发明通过构建自监督SAE模型,完成从FBank特征到GBank特征的空间转换重构,学习具有良好声纹特性和抗噪鲁棒性的SAE Spec特征;通过基于AEMU模块的负样本挖掘策略,使用动态队列字典对负样本进行动态更新存储,提高了负样本学习的效率;利用改进的CE Loss函数将AEMU模块与SAE模型结合,构建AEMU‑SAE模型,使特征转换重构和特征负样本学习统一在AEMU‑SAE模型中,保证AEMU‑SAE模型能够在特征对抗增强过程中学习到包含高级语义信息的ASAE Spec特征,将ASAE Spec特征分别作为MLP模型和MLR模型的输入,通过多分类目标识别模型对识别任务进行处理,最终完成水下目标识别。
基本信息
专利标题 :
一种基于声嵌入记忆空间编码器模型的特征对抗增强水下目标识别方法
专利标题(英):
暂无
公开(公告)号 :
CN114565828A
申请号 :
CN202210170623.8
公开(公告)日 :
2022-05-31
申请日 :
2022-02-24
授权号 :
暂无
授权日 :
暂无
发明人 :
王兴梅刘洋涛米佳琛田兆楠孙润泽
申请人 :
哈尔滨工程大学
申请人地址 :
黑龙江省哈尔滨市南岗区南通大街145号哈尔滨工程大学科技处知识产权办公室
代理机构 :
代理人 :
优先权 :
CN202210170623.8
主分类号 :
G06V20/05
IPC分类号 :
G06V20/05 G06V10/46 G06V10/764 G06V10/82 G06K9/00 G06K9/62 G06N3/04 G06N3/08
法律状态
2022-05-31 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载