一种基于深度学习的钢坯自动语义分割识别方法
公开
摘要

本发明涉及一种基于深度学习的钢坯自动语义分割识别方法,包括以下步骤:步骤S1、数据集准备,获得不同运动状态以及不同形态的钢坯图像,进行预处理和标注,建立原始数据集;步骤S2、构建语义分割网络模型;步骤S3、训练步骤S2中的语义分割网络模型;步骤S4、测试步骤,将待测图像输入到训练所得的语义分割网络模型,得到分割结果。本发明分割网络的骨干网络使用了轻量型网络,同时应用了非对称卷积和空洞卷积,在保持训练精度和推理速度的同时,获得了更大的感受野;其次通过多尺度特征提取和融合,加强了各级特征图之间的信息交互,提高模型的分割性能;最后在解码部分应用密集上采样策略,避免上采样时的信息丢失,进一步提高模型的分割精度。

基本信息
专利标题 :
一种基于深度学习的钢坯自动语义分割识别方法
专利标题(英):
暂无
公开(公告)号 :
CN114612456A
申请号 :
CN202210278396.0
公开(公告)日 :
2022-06-10
申请日 :
2022-03-21
授权号 :
暂无
授权日 :
暂无
发明人 :
张利欣南清荣徐正光
申请人 :
北京科技大学
申请人地址 :
北京市海淀区学院路30号
代理机构 :
北京希夷微知识产权代理事务所(普通合伙)
代理人 :
王小东
优先权 :
CN202210278396.0
主分类号 :
G06T7/00
IPC分类号 :
G06T7/00  G06T7/11  G06V10/26  G06V10/44  G06V10/764  G06V10/82  G06K9/62  G06N3/04  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06T
一般的图像数据处理或产生
G06T7/00
图像分析
法律状态
2022-06-10 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332