基于深度学习的交通场景联合目标检测和语义分割方法
授权
摘要

本发明提出了一种基于深度学习的交通场景联合目标检测和语义分割方法。该方法实现目标包括:构建基于深度学习的联合目标检测和语义分割网络,其通过将SE模块纳入Skip‑Connection机制中形成语义信息丰富的编码器‑解码器特征图,并设置了一种新的候选框初始化机制生成密集且多尺度的目标候选框,采用空洞卷积扩大感受野获取了全局信息,对分割分支采用Self‑Attention模块优化了语义分割的特征分布,并在语义分割和目标检测之间采用了Cross‑Attention模块优化了二者的性能,同时,目标检测和语义分割任务之间可以互惠互利,有效提高了交通场景中联合目标检测和语义分割结果的精度。仿真结果表明,相比现有方法,本发明对交通场景中的联合目标检测和语义分割精度均有较大提高。

基本信息
专利标题 :
基于深度学习的交通场景联合目标检测和语义分割方法
专利标题(英):
暂无
公开(公告)号 :
CN111898439A
申请号 :
CN202010604812.2
公开(公告)日 :
2020-11-06
申请日 :
2020-06-29
授权号 :
CN111898439B
授权日 :
2022-06-07
发明人 :
南智雄彭极智米唯实徐林海辛景民郑南宁
申请人 :
西安交通大学
申请人地址 :
陕西省西安市咸宁西路28号
代理机构 :
西安通大专利代理有限责任公司
代理人 :
闵岳峰
优先权 :
CN202010604812.2
主分类号 :
G06K9/00
IPC分类号 :
G06K9/00  G06K9/34  G06N3/04  G06N3/08  
相关图片
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
法律状态
2022-06-07 :
授权
2020-11-24 :
实质审查的生效
IPC(主分类) : G06K 9/00
申请日 : 20200629
2020-11-06 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
1、
CN111898439A.PDF
PDF下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332