一种基于深度学习的时序动作识别方法
授权
摘要

本发明公开一种基于深度学习的时序动作识别方法,包含视频特征提取和时间边界回归模型构建。针对边界检测过程中长动作特征表达有效性不够的问题,通过双流网络同时提取帧间信息和帧内信息,得到视频单元的特征序列,并提出结合上下文信息的多尺度短动作段截选方案,有效地提高后续回归准确率,利用特征序列训练时间边界模型,减小模型训练时间,提高计算效率。针对长动作边界回归不准确问题,本发明提出一种改进的时间边界回归模型,包含改进的多任务多层感知器和一种全新的针对长动作的拼接机制,在保证动作类别准确的基础上,有效地提高长动作时间边界回归的准确率,提高预测动作段与实际动作段的重叠度,实现时序动作识别率的提高。

基本信息
专利标题 :
一种基于深度学习的时序动作识别方法
专利标题(英):
暂无
公开(公告)号 :
CN108573246A
申请号 :
CN201810431650.X
公开(公告)日 :
2018-09-25
申请日 :
2018-05-08
授权号 :
CN108573246B
授权日 :
2022-04-05
发明人 :
蔡轶珩孔欣然王雪艳李媛媛
申请人 :
北京工业大学
申请人地址 :
北京市朝阳区平乐园100号
代理机构 :
北京思海天达知识产权代理有限公司
代理人 :
刘萍
优先权 :
CN201810431650.X
主分类号 :
G06K9/00
IPC分类号 :
G06K9/00  G06T7/269  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
法律状态
2022-04-05 :
授权
2018-10-26 :
实质审查的生效
IPC(主分类) : G06K 9/00
申请日 : 20180508
2018-09-25 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332