一种基于卷积神经网络的SSVEP分类方法
授权
摘要

本发明属于数据处理领域,具体涉及一种基于卷积神经网络的SSVEP分类方法,该方法包括:将多通道SSVEP脑电数据通过滤波器组把时域的脑电数据分割为多个分别对应SSVEP刺激频率基波及谐波成分的频带;对分割后的数据进行快速傅里叶变换得到其对应的频谱数据;利用多路卷积神经网络分别对各个频带内的脑电频谱数据进行特征提取、学习和归类,最后进行分类;本发明利用SSVEP脑电信号中刺激目标所诱发的脑电电位存在着基波和各个谐波成分存在着互相关性的先验知识,使用时域滤波和快速傅里叶变换对脑电信号进行预处理提取出SSVEP信号的各个谐波成分并通过卷积神经网络来进行特征提取和分类,从而获得更高的分类准确率。

基本信息
专利标题 :
一种基于卷积神经网络的SSVEP分类方法
专利标题(英):
暂无
公开(公告)号 :
CN113052099A
申请号 :
CN202110349963.2
公开(公告)日 :
2021-06-29
申请日 :
2021-03-31
授权号 :
CN113052099B
授权日 :
2022-05-03
发明人 :
姜小明赵德春王添田媛媛向富贵
申请人 :
重庆邮电大学
申请人地址 :
重庆市南岸区南山街道崇文路2号
代理机构 :
重庆辉腾律师事务所
代理人 :
卢胜斌
优先权 :
CN202110349963.2
主分类号 :
G06K9/00
IPC分类号 :
G06K9/00  G06N3/04  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
法律状态
2022-05-03 :
授权
2021-07-16 :
实质审查的生效
IPC(主分类) : G06K 9/00
申请日 : 20210331
2021-06-29 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332