一种基于图时空神经网络的变压器故障预测方法
实质审查的生效
摘要

本发明涉及一种基于图时空神经网络建模的变压器故障预测方法,包括:将变压器的油中溶解气体的时序数据输入训练好的图时空神经网络,输出变压器的预测故障类别;图时空神经网络包括图学习层、标准卷积层、时空信息提取模块和softmax层,时空信息提取模块包括若干个图卷积层和时序卷积层,若干个空间特征信息和时序卷积层交错连接,图学习层分别与各层图卷积层连接;预测故障类别的输出过程包括:将时序数据作为节点嵌入,输入图学习层,生成邻接矩阵,将邻接矩阵分别输入各层图卷积层;时序数据依次经过标准卷积层、空信息提取模块和softmax层,获得变压器的预测故障类别。与现有技术相比,本发明具有准确性高、可解释性强等优点。

基本信息
专利标题 :
一种基于图时空神经网络的变压器故障预测方法
专利标题(英):
暂无
公开(公告)号 :
CN114358159A
申请号 :
CN202111607551.0
公开(公告)日 :
2022-04-15
申请日 :
2021-12-27
授权号 :
暂无
授权日 :
暂无
发明人 :
毛玮韵魏本刚徐湘忆陈璐吴天逸彭政睿任辰
申请人 :
国网上海市电力公司
申请人地址 :
上海市浦东新区自由贸易试验区源深路1122号
代理机构 :
上海科盛知识产权代理有限公司
代理人 :
杨元焱
优先权 :
CN202111607551.0
主分类号 :
G06K9/62
IPC分类号 :
G06K9/62  G06N3/04  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
G06K9/62
应用电子设备进行识别的方法或装置
法律状态
2022-05-03 :
实质审查的生效
IPC(主分类) : G06K 9/62
申请日 : 20211227
2022-04-15 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332