一种基于双阶段个性化联邦学习方法
实质审查的生效
摘要

一种基于双阶段个性化联邦学习方法,属于机器学习领域。包括:1)全局表征学习阶段:依据不同客户端所获取的不同数据信息进行统一的联邦表征学习,以获得准确的图像到特征空间的表征映射模型;先进行本地客户端学习,然后在全局服务器上进行客户端聚合为全局模型;2)个性化分类器学习阶段:利用联邦学习获得的表征映射模型,依据不同客户端的数据分布训练个性化分类器。可有效利用各个客户端数据获得全局的表征模型和本地个性化分类器模型,提高识别精度。建立在联邦学习与对比学习的基础上,实用性强,灵活性高,能够满足不同数据分布和计算资源下的联邦学习需求。为客户端训练出偏差较小的全局表征模型和更加个性化的本地分类器模型。

基本信息
专利标题 :
一种基于双阶段个性化联邦学习方法
专利标题(英):
暂无
公开(公告)号 :
CN114529012A
申请号 :
CN202210152993.9
公开(公告)日 :
2022-05-24
申请日 :
2022-02-18
授权号 :
暂无
授权日 :
暂无
发明人 :
丁兴号黄悦庄易鸿井长兴
申请人 :
厦门大学
申请人地址 :
福建省厦门市思明区思明南路422号
代理机构 :
厦门南强之路专利事务所(普通合伙)
代理人 :
马应森
优先权 :
CN202210152993.9
主分类号 :
G06N20/00
IPC分类号 :
G06N20/00  G06N3/08  G06K9/62  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06N
基于特定计算模型的计算机系统
G06N20/00
机器学习
法律状态
2022-06-10 :
实质审查的生效
IPC(主分类) : G06N 20/00
申请日 : 20220218
2022-05-24 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332