一种基于迁移模型的小样本茶叶图像分类方法
公开
摘要
本发明公开一种基于迁移模型的小样本茶叶图像分类方法,该方法首先利用摄像头采集茶叶图像构建茶叶图像分类数据集,然后构建迁移模型,并利用茶叶基类图像数据基于交叉熵损失函数与监督损失函数的加权和利用梯度下降法对迁移模型进行训练,最后将迁移模型中基类分类器、旋转预测分类以及Softmax层移除,使用原型分类器完成小样本茶叶图像分类测试。本发明在卷积神经网络训练过程中引入自监督任务提高模型的迁移性,将此迁移模型应用到小样本茶叶图像分类任务中,能够提高小样本茶叶图像分类识别的性能。
基本信息
专利标题 :
一种基于迁移模型的小样本茶叶图像分类方法
专利标题(英):
暂无
公开(公告)号 :
CN114580552A
申请号 :
CN202210228607.X
公开(公告)日 :
2022-06-03
申请日 :
2022-03-10
授权号 :
暂无
授权日 :
暂无
发明人 :
杨赛杨慧周伯俊胡彬
申请人 :
南通大学
申请人地址 :
江苏省南通市啬园路9号
代理机构 :
南京瑞弘专利商标事务所(普通合伙)
代理人 :
徐激波
优先权 :
CN202210228607.X
主分类号 :
G06K9/62
IPC分类号 :
G06K9/62 G06N3/04 G06N3/08 G06V10/764 G06V10/774 G06V10/82
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
G06K9/62
应用电子设备进行识别的方法或装置
法律状态
2022-06-03 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载