一种用于高维图像数据的自主子空间聚类方法
授权
摘要

本发明提供一种用于高维图像数据的自主子空间聚类方法,包括获取高维图像数据,基于自主学习正则化项,通过求解样本权重的优化问题来学习样本的权重;通过带权重的自表示模型求自表示系数;利用自表示系数建立样本的相似度图;基于样本的相似度图进行谱聚类;检验收敛条件,若不满足则返回,若满足则流程终止,得到最终的自主子空间聚类结果。该方法将自主学习与子空间聚类进行融合,通过一种新的自主正则化项来对样本进行权重调整,有效的改善了子空间聚类模型的局部最优解,从而提升子空间聚类的性能。

基本信息
专利标题 :
一种用于高维图像数据的自主子空间聚类方法
专利标题(英):
暂无
公开(公告)号 :
CN110414560A
申请号 :
CN201910560704.7
公开(公告)日 :
2019-11-05
申请日 :
2019-06-26
授权号 :
CN110414560B
授权日 :
2022-06-07
发明人 :
杜博刘友发张乐飞
申请人 :
武汉大学
申请人地址 :
湖北省武汉市武昌区珞珈山武汉大学
代理机构 :
武汉科皓知识产权代理事务所(特殊普通合伙)
代理人 :
严彦
优先权 :
CN201910560704.7
主分类号 :
G06K9/62
IPC分类号 :
G06K9/62  
相关图片
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
G06K9/62
应用电子设备进行识别的方法或装置
法律状态
2022-06-07 :
授权
2019-11-29 :
实质审查的生效
IPC(主分类) : G06K 9/62
申请日 : 20190626
2019-11-05 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
1、
CN110414560A.PDF
PDF下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332