基于分离表示的脑肿瘤图像生成与分割联合学习方法
实质审查的生效
摘要

本发明涉及一种基于分离表示的脑肿瘤图像生成与分割联合学习方法。基于分离表示将共享的内容和域特定样式特征分离出来,通过将提取的内容特征与分割任务相连接,能够有效提高脑肿瘤图像合成与分割的效果。通过对缺失模态的合成,无需在所有可能的模态子集上训练模型,复杂性相对更小,所需的训练时间更少。该网络模型可以灵活地处理随机一个或多个缺失域,使模型在输入任何多模态子集时都具有鲁棒性。

基本信息
专利标题 :
基于分离表示的脑肿瘤图像生成与分割联合学习方法
专利标题(英):
暂无
公开(公告)号 :
CN114332102A
申请号 :
CN202111680466.7
公开(公告)日 :
2022-04-12
申请日 :
2021-12-31
授权号 :
暂无
授权日 :
暂无
发明人 :
黄立勤刘晨雨杨明静
申请人 :
福州大学
申请人地址 :
福建省福州市闽侯县福州大学城乌龙江北大道2号福州大学
代理机构 :
福州元创专利商标代理有限公司
代理人 :
陈明鑫
优先权 :
CN202111680466.7
主分类号 :
G06T7/10
IPC分类号 :
G06T7/10  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06T
一般的图像数据处理或产生
G06T7/10
分割;边缘检测
法律状态
2022-04-29 :
实质审查的生效
IPC(主分类) : G06T 7/10
申请日 : 20211231
2022-04-12 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332