一种基于对比学习的小样本珍稀鸟类识别方法
实质审查的生效
摘要

本发明公开一种基于对比学习的小样本珍稀鸟类识别方法,该方法首先收集普通鸟类图像构建预训练图像数据集,然后在预训练图像数据集随机抽取一批图像输入到预训练模型中,提取正例图像样本和负例图像样本的投影向量特征,计算正例图像样本特征与负例图像样本特征之间的对比损失函数,利用梯度下降法完成预训练过程。接下来固定预训练模型中主干神经网络的参数,移除投影器并添加线性分类器以及Softmax层,利用收集的珍稀鸟类图像使用交叉损失函数对线性分类器参数进行优化,完成识别模型的训练,最后利用识别模型对珍稀鸟类图像进行在线分类识别。该方法通过对比学习对卷积神经网络进行训练来提高网络的迁移性,从而提高小样本珍稀鸟类识别方法的性能。

基本信息
专利标题 :
一种基于对比学习的小样本珍稀鸟类识别方法
专利标题(英):
暂无
公开(公告)号 :
CN114548256A
申请号 :
CN202210148817.8
公开(公告)日 :
2022-05-27
申请日 :
2022-02-18
授权号 :
暂无
授权日 :
暂无
发明人 :
杨赛胡彬周伯俊杨慧
申请人 :
南通大学
申请人地址 :
江苏省南通市啬园路9号
代理机构 :
南京瑞弘专利商标事务所(普通合伙)
代理人 :
徐激波
优先权 :
CN202210148817.8
主分类号 :
G06K9/62
IPC分类号 :
G06K9/62  G06N3/04  G06N3/08  G06V10/764  G06V10/774  G06V10/74  G06V10/82  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
G06K9/62
应用电子设备进行识别的方法或装置
法律状态
2022-06-14 :
实质审查的生效
IPC(主分类) : G06K 9/62
申请日 : 20220218
2022-05-27 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332