基于卷积长短时记忆神经网络的交通事故风险预测方法
授权
摘要

本发明公开了一种基于卷积长短时记忆神经网络(ConvLSTM)的城市交通事故风险预测方法,具体为:对预测城市进行空间网格划分;将历史交通事故数据按同一时间间隔统计并映射到网格,生成随时间变化的风险矩阵;根据交通事故的发生在时间上具有连续性和周期性特点,将风险矩阵序列划分为连续性分支和周期性分支;提取城市的天气、节假日等外部数据的特征并量化,构造外部特征向量;建立基于ConvLSTM的深度学习模型对城市各网格区域的交通事故风险进行预测。本发明从交通事故的连续性和周期性两个方面进行建模,利用ConvLSTM同时提取交通事故数据的时间特征和空间特征,并进一步融合外部环境特征,提高了预测结果的准确度,对交通管理和事故预警具有一定的指导意义。

基本信息
专利标题 :
基于卷积长短时记忆神经网络的交通事故风险预测方法
专利标题(英):
暂无
公开(公告)号 :
CN113222218A
申请号 :
CN202110409819.3
公开(公告)日 :
2021-08-06
申请日 :
2021-04-16
授权号 :
CN113222218B
授权日 :
2022-06-10
发明人 :
方路平黄友志刘强
申请人 :
浙江工业大学;浙江警察学院
申请人地址 :
浙江省杭州市下城区潮王路18号
代理机构 :
杭州求是专利事务所有限公司
代理人 :
邱启旺
优先权 :
CN202110409819.3
主分类号 :
G06Q10/04
IPC分类号 :
G06Q10/04  G06Q10/06  G06F17/16  G06N3/04  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06Q
专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10/00
行政;管理
G06Q10/04
预测或优化,例如线性规划、“旅行商问题”或“下料问题”
法律状态
2022-06-10 :
授权
2021-08-24 :
实质审查的生效
IPC(主分类) : G06Q 10/04
申请日 : 20210416
2021-08-06 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
1、
CN113222218A.PDF
PDF下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332