一种基于渐进式分割网络的细微缺陷分析方法
公开
摘要
本发明公开一种基于渐进式分割网络的细微缺陷分析方法,包括步骤:采集部件表面的原始图像,并将其裁剪为若干小块图像;将小块图像分别输入细微缺陷特征提取网络中提取图像特征;根据提取到的图像特征将小块图像分为缺陷图和不包含缺陷的背景图;对于缺陷图,将其提取到的图像特征输入缺陷分割网络中,以获取对应缺陷的分割掩膜图;根据分割掩膜图对缺陷进行定量分析,获取缺陷的面积、长度和宽度等信息。本发明通过设定合适的重叠阈值对原始图像进行重叠性分割,在保证缺陷完整性的同时提高缺陷检测的检测效率和检测精度,并通过深度神经网络首先对裁剪后的图像进行分类,然后仅对包含缺陷的图像做检测分析,进一步提高了缺陷检测的效率。
基本信息
专利标题 :
一种基于渐进式分割网络的细微缺陷分析方法
专利标题(英):
暂无
公开(公告)号 :
CN114612444A
申请号 :
CN202210256643.7
公开(公告)日 :
2022-06-10
申请日 :
2022-03-16
授权号 :
暂无
授权日 :
暂无
发明人 :
汪俊涂启帆李大伟易程
申请人 :
南京航空航天大学
申请人地址 :
江苏省南京市秦淮区御道街29号
代理机构 :
南京钟山专利代理有限公司
代理人 :
王磊
优先权 :
CN202210256643.7
主分类号 :
G06T7/00
IPC分类号 :
G06T7/00 G06T7/11 G06K9/62 G06V10/764 G06V10/82 G06V10/80 G06N3/04 G06N3/08
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06T
一般的图像数据处理或产生
G06T7/00
图像分析
法律状态
2022-06-10 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载