一种海思无NPU硬件上实现的卷积神经网络方法
实质审查的生效
摘要

本发明涉及图像处理技术领域,公开了一种海思无NPU硬件上实现的卷积神经网络方法,包括以下步骤:修改网络结构,修改网络结构中的卷积单元,通过多个卷积单元设计出YOLO或SSD网络模型;训练网络模型使用8位图像作为YOLO或SSD网络模型的输入,对YOLO或SSD网络模型进行训练,使得卷积单元中的卷积层、池化层、反卷积层和激活层中的每一层的输出均通过激活函数变换为8位数据,卷积核也使用8位进行存储;使用训练好的YOLO或SSD网络模型通过IVE算子设计前向运算,这种实现卷积神经网络的方法,成本低廉,可以在现有大量使用的安防前端设备上完成高性能的视频检测、分析任务,不增加成本。

基本信息
专利标题 :
一种海思无NPU硬件上实现的卷积神经网络方法
专利标题(英):
暂无
公开(公告)号 :
CN114386578A
申请号 :
CN202210031395.6
公开(公告)日 :
2022-04-22
申请日 :
2022-01-12
授权号 :
暂无
授权日 :
暂无
发明人 :
王飞
申请人 :
西安石油大学
申请人地址 :
陕西省西安市雁塔区电子城街道电子二路东段18号
代理机构 :
西安铭泽知识产权代理事务所(普通合伙)
代理人 :
韩晓娟
优先权 :
CN202210031395.6
主分类号 :
G06N3/04
IPC分类号 :
G06N3/04  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06N
基于特定计算模型的计算机系统
G06N3/00
基于生物学模型的计算机系统
G06N3/02
采用神经网络模型
G06N3/04
体系结构,例如,互连拓扑
法律状态
2022-05-10 :
实质审查的生效
IPC(主分类) : G06N 3/04
申请日 : 20220112
2022-04-22 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332